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Diffusion in a one-dimensional random medium and
hyperbolic Brownian motion
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and
LPTPE, Universié Paris 6, 4 Place Jussieu, 75252 Paris, France

Received 13 October 1995

Abstract. Classical diffusion in a random medium involves an exponential functional of
Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann
surface of constant negative curvature. We analyse in detail this relationship and study various
distributions using stochastic calculus and functional integration.

1. Introduction

There is a close link between one-dimensional, or quasi-one-dimensional, disordered systems
and Brownian diffusion on Riemann manifolds of constant negative curvature. Such a
correspondence can be traced back to the pioneering work of Gertsenshtein and Vasil'ev
[1] who have shown that the statistical properties of reflection and transmission coefficients
for waveguides with random inhomogeneities are directly related to some random walk
on the Lobachevsky plane. There has been renewed interest in this approach for the
study of mesoscopic systems. The description of quasi-one-dimensional mesoscopic wires
involves a Fokker—Planck equation for the probability distribution of Aheigenvalues of
the transmission matrix [2]. Recently it has been shown that this equation can be interpreted
as the diffusion equation on a Riemannian symmetric space [3]. An exact solution has been
obtained in the unitary case by Beenaker and Rejaei [3]. Caselle then solved the general
case [3] by relating it to a suitable Calogero—Sutherland model.

The purpose of this work is to show how the one-dimensional, classical diffusion of a
particle in a quenched random potentla(x), that is itself a Brownian motion, possibly
with some constant drift, is directly related to Brownian motion on the hyperbolic plane.
Since the latter is the archetype of chaotic systems [4], our work forms a bridge between
disordered and chaotic systems.
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2. A fundamental random variable for one-dimensional, classical diffusion in a
guenched random potentialU (x)

Much work has been done on random walks, defined on a lattice by the master equation
Pn(t + 1) = anflpnfl(t) + ﬁn+lPt1+l(t) (21)

whereq,, is the random, quenched transition rate from site site(n+1) andg, = 1—«,
is the random, quenched transition rate from sit® site (n — 1). From a physical point
of view it is convenient to introduce a corresponding random potebtia) on each site:
and to write the ratio of the two transition rates and 8, as an Arrhenius factor

B, e AUe-D-Um]

Fn _ [Un+D)—-U(n-1)]
o, T e BlUn+D-Um] T e : (2-2)

o, =
The study of different physical quantities related to this random walk [5] involves
systematically random variables of the form

b n
Z(a,b) = Z nok =0,+ 00,0441+ +040441...0p. (2.3)
n=a k=a
The fundamental property of these variables is to satisfy the linear, random coefficient,
recurrence relation

Z(a,b) = 0,1+ Z(a +1,b)]. (2.4)

The Ising chain in a random magnetic field [6] also involves such a discrete multiplicative
stochastic process.

Let us now consider the one-dimensional continuous model of classical diffusion defined
by the Fokker—Planck equation for the probability dengtty, ¢|xo, 0)

aP 10 (9P
o =55 <3x - ﬁF(x)P) (2.5)

where {F(x)} is a quenched random force. In this continuous limit, the discrete random
variableZ (a, b) defined in (2.3) becomes an exponential functional of the random potential

Ux) =~ ["F(y)dy

b b X
t(a,b) = / dx PVO-V@] = / dx exp[ - ,3/ F(y) dy]. (2.6)
The evolution of this functional is governed by the stochastic differential equation
ad
8—T(a,b) — BF(a)t(a, b) — 1 2.7)
a

which replaces the random-coefficient recurrence relation (2.4) satisfietidayp). Note
that the stochastic terrfi(a) appears multiplicatively, so that the fluctuations of the random
force are coupled to the values taken by the random proces®).

We shall now explain how the functional(a, b) arises in some physical quantities
associated with the classical diffusion of a particle in a quenched, random environment.
e If the random force has a positive medf(x)) = Fy > 0, then the probability

distribution of the random functional
= lim t(a,b) (2.8)

(b—a)—o0

Too
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determines the large-time, anomalous behaviour of the position of the Brownian particle
[7]. In particular the velocity defined for each sample as
+00

d
V=Ilm — dx x P(x, t]xo, 0) (2.9)

t=oo Ot J_oo

is a self-averaging quantity inversely proportional to the first momentof7]
1
V= . 2.10
2(Ts0) ( )

When the quenched random force is distributed with the Gaussian measure

1
DF(x)exp[ ~ 5 / dx (F(x) — F0)2:| (2.11)
o
then the probability distributioP, () of the functionalr, is [7]
a 1N\, 1
() = ~1/at 2.12
P =10 <ar) R (212)

where u = 2Fy/Bo > 0 is a dimensionless parameter amd= ¢82/2. This algebraic
decay for larger explains the dynamical phase transitions that occur in this model [7].
In particular equation (2.10) implies that the value= 1 separates a phase of vanishing
velocity V =0 for 0 < u < 1 and a phase of finite velocity > 0 for u > 1.

e The functionak (a, b) also arises in the study of the transport properties of finite-size
disordered samples. The stationary curréntwhich goes through a disordered sample of
length N with fixed concentrationgy and Py at the boundary can be written in terms of
the exponential functionaly = 7(0, N) as [8, 9]

1|:P0 P alnrN}

Iy == N (2.13)

2 N IN

When the endr = N is a trap described by the boundary conditi®pn = 0, the fluxJy is
simply a random variable inversely proportional#g. The probability distribution ofry
has been studied for the case of zero mean f@ice- 0 [8] and for the general case with
arbitrary mean force [9] by different methods.

The functionalty has also been applied to problems of finance [10-12]. Yor has
pointed out [11] the relation between the functiongl for the particular case of = %
and free Brownian motion on the hyperbolic plane. In the following, we first rederive
this correspondence and then generalize it to arbitggrysing an external drift on the
hyperbolic plane.

3. Relation to hyperbolic Brownian motion

The upper half-plang(x, y), y > 0} endowed with the metric

dx? 4 dy?
ds2 = SO 3.1)
y
defines a two-dimensional Riemann manifold of constant negative Gaussian curvature
R = —1. The surface elementSdand the Laplace operatak are covariantly defined

as

dx dy o 9? 32
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Free Brownian motion on this manifold is defined by the diffusion equation for the Green
function G, (x, y)

G 92 92

— =DAG=Dy*| —+ — |G. 3.3

or Y <8x2+8y2) (3.3)
It is convenient to choose the initial condition at the pdint=0, y = 1)

Gi(x,y) v §(x)é(y — D). (3.4)
The normalization of the Green functiah, (x, y) then reads for any time

+00 +00 1
—00 0
Consider the probability densitg, (x, y)
1

Pi(x,y) = FGf(x’ y) (3.6)

normalized with respect to the flat measunedg
+00 +00
1= / dx/ dy P (x, y). 3.7
—00 0

This probability density satisfies the Fokker—Planck equation

dP 32 92

— =D +-—)y*P 3.8

ot <3x2 + 3y2> Y (3:8)
and the initial condition

Pr(x,y) —= 8()8(y = D). (3.9)

We now introduce two independant Gaussian white noig€s and n(¢) and write the
stochastic differential equations for the procés&), y(¢)} corresponding to the Fokker—
Planck equation (3.8) following respectively thé kr Stratonovich convention [13]

d
d*x = V2Dyn(1)
Ito df (3.10)
& = V2Dyna(0)
d
~ 2Dyna(1)
Stratonovic g; (3.112)
o= —Dy +~2Dyns(t).

Direct integration of the stochastic differential equation for the procegs gives
immediately

y(t) = exp[ — Dt + «/ﬁ/ n2(s) dsi|. (3.12)
0

The processy(t) is therefore simply the exponential of a linear Brownian motion with
negative drift. Let us now study more precisely the proogss which evolves according
to the Langevin equation

dx
%= V2Dy@)m() (3.13)
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wherey(¢) is a process statistically independent of the white ngige). It is convenient
to look for a change (¢) of the timer which transforms this equation into the Langevin
equation for linear Brownian motion in this new timer):

git = /2D (7). (3.14)
By using the homogeneity properties of the white noise

N) = jg% (3.15)
one may determine the time transformation necessary to pass from (3.13) to (3.14):

<o, (3.16)
We thus obtain the representation given by Yor [11]

X(1) = @/Ot' du 7 (u) (3.17)
with

T = /Ot dv y2(v). (3.18)
More explicitly by using (3.12) one has

T = /Of dv exp[ —2Dv + 2@/; n2(s) ds:|. (3.19)
If we set

B /0 F(u)du = 2Dv — ZJE/OU n2(s) ds (3.20)

then the new time, is nothing but the functional (2.6)

T = /Ot dv exp[ - ,B/OU F(u) du:| (3.22)

which is encountered in the study of classical diffusion in a quenched {a@tgéistributed
as the Gaussian white noise

+o0
DF(x)exp|:— %/ (F(x) — FO)de:| (3.22)

oo

with parameters?y = 2D/ ando = 8(D/f?).
In other words, the free Brownian motidm(z), y(¢)} on the hyperbolic plane can be
rewritten in terms of two independent white noises of measure

400

DF(x)exp[ — %/ (F(x) — Fo)zdx:| and D(1) exp[ — %/dt nz(z)]
(3.23)

The processy(r) is simply the exponential of the Brownian motion with drit(r) =
- fot F(u) du:

y(t) = exp[ - g i F(u) du:| = vz (3.24)
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The process (t) can be viewed as a linear Brownian motion
x(t) = VZD/ du n(u) (3.25)
0

with an effective timer, that is itself a random process dependingy@n

7 =/ dv PV =f dv y2(v). (3.26)
0 0

Note that the dimensionless parametes 2Fy/Bo which characterizes the different phases
of anomalous diffusion i% for free hyperbolic Brownian motion. This value represents the
natural drift induced by the curvature of the Poirichalf-plane. In fact one may generalize

this analysis to arbitrary. by introducting an external constant drift in the directiony:

mw=3+m. (3.27)
The corresponding stochastic differential equations then read
dx
o=V 2D yna (1)
Ito df (3.28)
d% = —2Dmy + vV 2Dynz(1)
dx
@ V2Dyn(r)
Stratonovic q (3.29)
& = ~2Duy +V2Dyna(0).

For any u there is therefore a direct correspondence through equations (3.24)—(3.26)
between the joint stochastic process characterizing the one-dimensional difftesigiom
potential U(z), exponential functionak,} and the Brownian motiorf{x(¢), y(t)} on the
hyperbolic plane with possibly some external constant drifalong directiony. We now
consider some consequences of this correspondence.

4. Marginal laws of the processes;, x(t) and y(t)

The marginal lawy, (y) of the process (z) reads according to equation (3.24)

1 (' (du 2 Ui
Y, (y) :/ DU(s)exp[— —f < +Fo) ds:|8(y—eﬂ 0/2y, (4.1)
U(0)=0 20 Jo \ ds

We thus get after some algebra the following log-normal distribution

1
Yi(y) = Xp[—m(ln(y) + ZMDf)2:| (4.2)

1
—— e
y/4m Dt
wherep = 2Fy/Bo and D = B%0/8. In the case of free Brownian motidp = %), this
marginal law tends to & distribution in the limitt — oo

Yoo (y) = 8(y). (4.3)

The Brownian particle is therefore attracted to the- 0 axis as a result of the curvature
of the hyperbolic plane. Note that this axis represents infinity on this plane. This limit law
remains unchanged as long as= (% + m) > 0. However, when the constant external
drift m in the y direction is negative enough to overcome the natural drift of the hyperbolic
plane (n < —%), there is no equilibrium distribution for the procegg&). We shall now
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show how in the casg > 0 the existence of the stationary distribution (4.3) for the process
y(t) may govern the existence of a stationary distribution for the pracéss

The process(¢) is a Brownian motion of effective time, which is a functional of the
processy(t):

x(t):@/tr due 1 (ue) with 7, =/ dv e’V =/ dvy?(v). (4.4)
0 0 0

The statistical independence »ft) andz, allows us to write the marginal law, (x) of the
processx(t) in terms of the probability distributiony, (z) of the functionalr, as

1
Va4r Dt

In a previous work [9], we have shown thdt(r) obeys a Fokker—Planck equation
whose solution can be expressed in terms of an expansion on a suitable eigenvector basis.
Let us rederive briefly this expansion for completeness. The starting point is the Langevin
equation (2.7) satisfied by(a, b) defined in (2.6):

g /4Dt (4.5)

X,(x) = / " e (o)
0

g—;(a, b) =BF(a)t(a,b) -1 (4.6)

where the random forcé& is Gaussian white noise of measure
1 +oo
DF(x)exp[ - 7/ (F(x) — Fo)zdxj|. 4.7
0 J o0

The process (a, b) is therefore a multiplicative Markov process. By using the Stratonovich
prescription for (4.6), one may write the corresponding Fokker—Planck equation for the
probability distributionP, ,(t) as

9 Pap(7) 3[ 20Pap(7)
- = —|art

da ot at

which must be supplemented by the initial conditiBy,(t) = §(7).
Since P, ,(t) can only depend on the length — a) of the integration domain defining
7(a, b) in equation (2.6), we have

+ ((n+ Dat — 1)Pa,b(f)] (4.8)

P, p(T) = ¥ (T) wheret = b —a. (4.9)

The probability distributiony,(z) of the process, therefore satisfies the Fokker—Planck
equation

at ot 9t

with the initial conditiony,_o(t) = §(7).
We now recall the solution [9] expanded in the Fokker—Planck eigenvector basis

n 1+pu—n
e 3 e CV20 (TN 1Y
! o2 rd+p—n) \at " at

o o 2, (2 . 122 AN 1 d+m/2
. ds e W H59/45 sinh ’F (—7 F)’ =
+47'[2/(; s s TS > + > ar

1
XWip)/2iss2 <M> g Y/ (4.11)

() _ 0 [a#aw’(” +((u+1>ar—1>wt(r)] (4.10)
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where theL;, are Laguerre polynomials and th, , Whittaker functions. By integrating
with the Gaussian kernel (4.5) and by using the transpositien4D, one may obtain an
expansion presenting the same time-relaxation spectrum

apnumy ("D =20) T(u+3 —n) ( 1 >u+;

XI(X)Z Z e n'F(1+pL—n) F(%—n) 1+x2

O0<n<p/2

xF(—n,n—p, 3; —x°)

1 o 2,2 . 122 NG
N ds e P+ ¢ sinh ’F (—7 p)‘
+4n2ﬁ/0 g S ST 2 713

n+1l s p+1 s 1 2
F s e 4.12
X<2+'2’2 227 (4.12)
where F(a, b, c; z) denotes the hypergeometric function of parameter, c).
We note parenthetically that the marginal Ia¥y(x) itself satisfies a Fokker—Planck
equation. Indeed equations (4.5) and (4.10) lead directly to

ot ox dx

To our knowledge, this equation which has been obtained here through the link (3.17) with
the functionalr;, has never been obtained directly.

Let us stress the utility of the developments (4.11) and (4.12) in the study of long-time
behaviour. Foru < O the relaxation spectrum is purely continuous, and there is no limit
distribution. However, fop. > 0O there is at least one discrete ternm=£ 0) that corresponds
to an equilibrium distributionX ., (x) in the limit ¢t — oo:

B 1 F(/L“r%) 1 ;H'%
Fet = T <1+x2> ' (414

For 0 < u < 2 this is the only discrete term, and the relaxation towards equilibrium is thus
entirely governed by the continuum. For<2u there are other discrete terms, for example
n = 1, that govern the exponential relaxation towards equilibrium.

The existence of the limit law (4.14) for hyperbolic Brownian motion reveals a
‘localization’ phenomenon in direction. This effect comes from the attraction towards the
axis y = 0. Note that for the free casg. = %), the asymptotic marginal law ., (x) is
simply a Lorentzian:

(4.13)

1 1
Xoox)= = " . 4.15
W= i (4.15)
In sum there exist equilibrium distributions f&fg, and X, as long agt = (%er) > 0:

Yoo (y) = 8(y)
1T 1 1 nt3 (4.16)

Xoo(x):— (M+2) ) .
Jro T(w) 1+ x2

The joint law of the processds (¢), y(¢)} thus exhibits the factorization form in the limit
t — o0.

Pyo(x,y) = Xoo(x)8(y). (417)

However, as long as timeis finite, the two processes(t) and y(¢) remain coupled. The
study of their joint law is then needed to get a complete description of hyperbolic Brownian
motion.
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5. Joint laws of the processe$r:, U (t)} and {x(t), y(t)}

By using path integrals, we may obtain very simply the joint awz || «) of the random
variables

t
T, =/ dx U and U(r).
0

Let us generalize the approach we used in [9]. THeaplace transform of the joint law

E@©7"" | u) E/ dre Yy (t || u) (5.1)
0
can be written as a path integral over the random potential
U(t)=u 1 t 2 t
E@€P% || u) =/ DU(x)eXp[— —/ (dU + Fo> dx —p/ dx ef‘Um}
U(0)=0 20 Jo \ dx 0
U(t)=u
= exp(—F¢t/20) exp(— Fou /o) DU (x)
U(0)=0
1 (' /du? ' U
xexp[—zg/O (dx> dx—p/o dx € } (5.2)

The remaining path integral is simply the Euclidean quantum-mechanical Green function
(u|e”"H|0) associated with the Liouville Hamiltonian

o d?

H=——— + pe’". 5.3
sae TP (5.3)

We therefore get
E@7™ || u) = e~5/2 e /7 (uje " 0). (54)

The expansion of the Green functigm|e™'#|0) in the basis of eigenfunctiong; ()
Bk "
e =2,/ smh f " Ko/ a (2\/56" /2) (5.5)

+00 dk
(ule”"10) = / o> Yy (Oe ek, (5.6)

oo

gives

We finally obtain as ther-Laplace transform of the joint law,(z || y) of the random
variables

t
T = / dx AV and  y(r) =€V
0
after some changes of variables

E@" | y) = /O dre g || )

e—ﬂltﬂz/4 1 +00 2 D »
- = —atq?/4 . : P . 14
=7 /;OO dg e "4 /*g sinhn g K, <2y /a> Ki, (2 a). (5.7)
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We now compute the?-Laplace transform of the joint law, (x, y) of the hyperbolic
Brownian motion starting from the series of momentsc®f) with y(r) being fixed as the
constanty

E@0 | y) = / dr e 0,(x, )

_ i (=9)
n=0

2@y || y() = y). (5.8)

By using equation (3.17), we may obtain a relation between the moment&fand
the moments of,, wheny(z) is fixed asy:

Ex® (@) || y) = @DY'"NM)E('(t) || ) (5.9)

where N (n) denotes the Wick combinatorial factor that counts the number of ways to pair
the 21 functionsn. In particular A (n) is equal to the moment of orden 2f a suitable
Gaussian random variabkewith variance unity:

+oo n
/\/(n)=/_ ;%szﬂe—fz/z F(”+2) H(zk 1. (5.10)

o0

By using this integral representation, we can resum the series of momentsinder the
integral

2 teo d 2 2
EE7™ | y) Z/ ﬁ; e PE@E T | y). (6.11)

o0

From equation (5.7) and the correspondeace 4D, we get

1 ot 2
E@E@0 || y) = ”2F< ) / dk e **/

+o0
x/ dv e 21y sinhrv Ky (ky) Ki (k). (5.12)

[e.¢]

For the free caséu = %), one may also obtain this expression from the Green function
G:(x, y) on the hyperbolic plane [14]:

2 +oo 2 1
E@E90 || y) = de e = Gi(x, y). (5.13)
—00 y
We finally mention that an alternative form of the joint @t || y) given in equation (5.7)
has been obtained by Yor [12] through the time Laplace transform

st (+zd/any; (2 — [,244%
/ deo,(t | y) = lJme I, (ar> wherev = [u +4a. (5.14)

One may also find in the mathematical literature [10-12] different expressions related to
the probability distributions of the functional{7;}, where 7, is an independent time,
exponentially distributed with parameter
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6. Conformal mapping from Poincaré half-plane to unit disk

Let us consider the conformal mapping from the Poinca® upper half-plane{z =
x +iy,y > 0} to the unit disk{w = ré?, |r| < 1}:
iz+1
w o (6.1)
The radial coordinate is directly related to the hyperbolic distandeon the Poinca
half-plane between the arbitrary poifit, y) and the poinfx = 0, y = 1} which we choose
as the initial point of the Brownian motion (3.9):

r= tanh(i) . (6.2)

The circle at infinityr = 1 corresponds to the axis= 0. The unit disk is well suited to
study free hyperbolic Brownian motion since it contains explicitly the rotational invariance
in the angley. In the new coordinates, the metric is

dx? + dy?
2 2 2 2
ds® = J2 = Y (dr® + r<do?) (6.3)
and the Laplace operator is
92 92 1-r»)271 9 9 1 92

A=y 4+ |="7 — - 1. 6.4
Y (8x2+8y2> 4 |:r or (rar)+r2 392] (6.4)
In the free case, the Fokker—Planck equation for the probability de@sity 0) reads

100 9 [ 8 (A—-r?)? (1-r?»? 92
D8t_8r|:r8r<4rQ e (6:9)

The rules of stochastic calculus [13] give the corresponding stochastic differential equations

)
ol & 4 2 (6.6)
o _ 2D (1)
dt Ul
? 1- 2D (1)
Stratonovic dé 2 (6.7)
— 2D
O - e (2).

Unlike the system (3.10) for the proces$e$t), y(1)}, these equations cannot be integrated
straightforwardly to give the process€s(t), 6(¢)} as functionals of the white noises
{n-(®), ne(r)}. We may, however, use the symmetry of the problem to write the asymptotic
probability distributionQ .. (r, #) in the limit t — oo as the uniform measure on the unit
circle

Ooo(r,0) = i5(F -1). (6.8)
21

For u # % the external constant drift = (u — %) along they direction breaks the
rotational invariance in the angle and the unit disk is not particularly useful anymore.
Nevertheless, one may obtain the asymptotic probability distribufign(r, 8) from the
asymptotic law (4.17) folP,(x, y) and from the Jacobian{(r, 0)/(x, y)},

4r p 2r cosH 1—r2
(r2+1—2rsing)2 “\r24+1—2rsing’ r2+1—2rsind
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obtaining after some algebra as the generalization of (6.8)

1 Tp+d 1
Wtz 1 gingyt, (6.10)

Qoo(r,0) =6(r — DﬁWZ’”?

7. Conclusion

We have discussed the exponential functiopalwhich governs transport properties of
one-dimensional classical diffusion in a random Brownian potential in terms of hyperbolic
Brownian motion. As explained in the introduction, this may be considered as an example of
a more general relationship that exists between one-dimensional, or quasi-one-dimensional,
disordered systems with a multiplicative stochastic stucture, and diffusion on symmetric
spaces.

It is interesting that the time-relaxation spectrum found for the probability distributions
¥, (t) and X,(x), equations (4.11) and (4.12), also appears in the quantum spectrum of a
particle in a constant magnetic fiell on the hyperbolic plane [15]. For the hyperbolic
geometry, a constant magnetic field is defined as the flux through a covariant surface element
dS = (1/y? dx dy. The two spectra coincide if we identify the magnetic fi@d> 0 in
terms of the driftu as

1+p
B = 5

In this context the existence of bound states in a strong enough magneti(Bfield%
corresponds to the presence of closed classical orbits [15]. It would be useful to understand
this correspondence between such spectra at the level of the stochastic processes themselves.

As a final remark we mention that the Liouville Hamiltonian that we encountered in
the path-integral formalism (5.3), and which is closely related to hyperbolic geometry, also
appears in the study of some fine properties of one-dimensional quantum localization for
the Schodinger HamiltonianH = —d?/dx? + V (x) whereV (x) is a Gaussian white-noise
potential [16]. Kolokolov used a path-integral method to compute correlation functions of
eigenstates and distribution functions of inverse participation ratio in the high-energy limit.
In this formalism the Liouville Hamiltonian shows up in the effective action of the path
integral. An expansion of this path integral in a basis of eigenstates then gives expressions
very similar to the one we obtained for the probability distribution of the joint law of the
processeszt;, U (1)}
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Appendix. Path-integral method to prove the identity in law (3.20)

In section 3 we derived the identity in law (3.17) mentioned by Yor for the free hyperbolic
Brownian motion [11]. As explained before, this identity can easily be generalized to any
u by the same method. Let us now derive it through a path-integral method using an
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appropriate stochastic reparametrization of time in the path integral. This tool has already
proven to be very useful in other contexts [17].

The integration of stochastic differential equations (3.27) gives the pragesas the
following functional of the two white noiseg;y, 1,}:

x(t) = «/Efol dv n1(v) exp[ —2Duv + «/Efou nz(s)dsi|. (A.1)
The marginal lawX,(x) of the procesx (¢) therefore reads by definition
X, (x) = fDm(u)Dnz(u)exp[— ;/Ot du (ni(u)+n§(u))}

X(S(x - @fot dv n1(v) exp[ —2Dpv + @/OU 12(s) dsD. (A.2)

Let us first change from,(u) to U (u) defined byBU (v)/2 = —2Duv + /2D fov n2(s) ds:

X, (x) = / D (u) exp[—é fo du nf(u)}
1 [ g dU 2
x/U(O)_ODU(u)exp[— E/o du (Zdv+2Du> ]
X(S(x - @f dv nl(v)eﬁU(”)/z) (A.3)
0

and now fromn1(u) to x(u) = /2D [, dvni(v)efV®/2:

x(t)=x 1 t B du 2
X(x):/ Dx(u) DU (u) ex |:—/ du (-}-ZDM) i|
t x(0)=0 U(0)=0 P 4D Jo 2 dv

1 ! dx 2
—BUu)/2
X eXp|: - — /(; du <du e ) :| (A4)

Let us now perform a time reparametrization of the trajectori@g in order to recover the
Wiener measure

! dx \? 4 dx \?
- —BUu) _ hadd
o (d) ¢ [ o (d)

ds = V@ dy and r{U(u)}:/ U dy. (A.5)
0

where

The new final timer {U (1)} is not fixed anymore, but depends on the realization of random
potential U (1). To take into account this constraint, we can insert the identity

o0 t
1=/ drS(t—/ eflvw du> (A.6)
0 0
to obtain

00 x(t)=x 1 t ﬂdU 2
X = d/ D DU (u) ex [—/d <+2D)}
() /0 o x| puwens| — o [an (55 +20m

X exp[ — % /OT ds (3);)2]8(1 — /Ot efvw du). (A7)
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Let us now perform the Gaussian path integralxgn),

/x(t)—x D ( ) exp[ 1 fl’ d (dx )2} 1 e_x2/4D, (A 8)
x(u - S\ o = T h, '
020 4D Jo ds a7 DT

to get
o0 l 2
X, (x) = dr —— e /4Py (¢ A9
= [l e (A.9)
where
1 [ g dU 2 !
(r):/ DU (u) ex [—/ du <+2D ) ]3<r_f eﬁUW)du)
wt U(0)=0 P 4D 0 2 dv H 0
(A.10)
is by definition the probability distribution of the functionat, = [, €’V® du.

Equation (A.9) is just the translation in terms of probability distributions of the identity
in law between the procesgr) and a linear Brownian motion of stochastic time

x(t) = @/‘n du n(u).
0
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