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Diffusion in a one-dimensional random medium and
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and
LPTPE, Universit́e Paris 6, 4 Place Jussieu, 75252 Paris, France
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Abstract. Classical diffusion in a random medium involves an exponential functional of
Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann
surface of constant negative curvature. We analyse in detail this relationship and study various
distributions using stochastic calculus and functional integration.

1. Introduction

There is a close link between one-dimensional, or quasi-one-dimensional, disordered systems
and Brownian diffusion on Riemann manifolds of constant negative curvature. Such a
correspondence can be traced back to the pioneering work of Gertsenshtein and Vasil’ev
[1] who have shown that the statistical properties of reflection and transmission coefficients
for waveguides with random inhomogeneities are directly related to some random walk
on the Lobachevsky plane. There has been renewed interest in this approach for the
study of mesoscopic systems. The description of quasi-one-dimensional mesoscopic wires
involves a Fokker–Planck equation for the probability distribution of theN eigenvalues of
the transmission matrix [2]. Recently it has been shown that this equation can be interpreted
as the diffusion equation on a Riemannian symmetric space [3]. An exact solution has been
obtained in the unitary case by Beenaker and Rejaei [3]. Caselle then solved the general
case [3] by relating it to a suitable Calogero–Sutherland model.

The purpose of this work is to show how the one-dimensional, classical diffusion of a
particle in a quenched random potentialU(x), that is itself a Brownian motion, possibly
with some constant drift, is directly related to Brownian motion on the hyperbolic plane.
Since the latter is the archetype of chaotic systems [4], our work forms a bridge between
disordered and chaotic systems.
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‡ Present address: Service de Physique Théorique, C.E. Saclay, 91191 Gif-sur-Yvette, France. E-mail address:
monthus@amoco.saclay.cea.fr
§ Unité de recherche des Universités Paris 11 et Paris 6 associée au CNRS.

0305-4470/96/071331+15$19.50c© 1996 IOP Publishing Ltd 1331



1332 A Comtet and C Monthus

2. A fundamental random variable for one-dimensional, classical diffusion in a
quenched random potentialU (x)

Much work has been done on random walks, defined on a lattice by the master equation

Pn(t + 1) = αn−1Pn−1(t)+ βn+1Pn+1(t) (2.1)

whereαn is the random, quenched transition rate from siten to site(n+1) andβn ≡ 1−αn
is the random, quenched transition rate from siten to site (n − 1). From a physical point
of view it is convenient to introduce a corresponding random potentialU(n) on each siten
and to write the ratio of the two transition ratesαn andβn as an Arrhenius factor

σn ≡ βn

αn
= e−β[U(n−1)−U(n)]

e−β[U(n+1)−U(n)] = eβ[U(n+1)−U(n−1)] . (2.2)

The study of different physical quantities related to this random walk [5] involves
systematically random variables of the form

Z(a, b) =
b∑
n=a

n∏
k=a

σk = σa + σaσa+1 + · · · + σaσa+1 . . . σb. (2.3)

The fundamental property of these variables is to satisfy the linear, random coefficient,
recurrence relation

Z(a, b) = σa[1 + Z(a + 1, b)]. (2.4)

The Ising chain in a random magnetic field [6] also involves such a discrete multiplicative
stochastic process.

Let us now consider the one-dimensional continuous model of classical diffusion defined
by the Fokker–Planck equation for the probability densityP(x, t |x0, 0)

∂P

∂t
= 1

2

∂

∂x

(
∂P

∂x
− βF(x)P

)
(2.5)

where {F(x)} is a quenched random force. In this continuous limit, the discrete random
variableZ(a, b) defined in (2.3) becomes an exponential functional of the random potential
U(x) = − ∫ x

F (y) dy

τ(a, b) =
∫ b

a

dx e[β[U(x)−U(a)] =
∫ b

a

dx exp

[
− β

∫ x

a

F (y) dy

]
. (2.6)

The evolution of this functional is governed by the stochastic differential equation

∂τ

∂a
(a, b) = βF(a)τ(a, b)− 1 (2.7)

which replaces the random-coefficient recurrence relation (2.4) satisfied byZ(a, b). Note
that the stochastic termF(a) appears multiplicatively, so that the fluctuations of the random
force are coupled to the values taken by the random processτ(a, b).

We shall now explain how the functionalτ(a, b) arises in some physical quantities
associated with the classical diffusion of a particle in a quenched, random environment.

• If the random force has a positive mean〈F(x)〉 ≡ F0 > 0, then the probability
distribution of the random functional

τ∞ ≡ lim
(b−a)→∞

τ(a, b) (2.8)
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determines the large-time, anomalous behaviour of the position of the Brownian particle
[7]. In particular the velocity defined for each sample as

V = lim
t→∞

d

dt

∫ +∞

−∞
dx xP (x, t |x0, 0) (2.9)

is a self-averaging quantity inversely proportional to the first moment ofτ∞ [7]

V = 1

2〈τ∞〉 . (2.10)

When the quenched random force is distributed with the Gaussian measure

DF(x) exp

[
− 1

2σ

∫
dx (F (x)− F0)

2

]
(2.11)

then the probability distributionP∞(τ ) of the functionalτ∞ is [7]

P∞(τ ) = α

0(µ)

(
1

ατ

)1+µ
e−1/ατ ∝

τ→∞
1

τ 1+µ (2.12)

whereµ = 2F0/βσ > 0 is a dimensionless parameter andα = σβ2/2. This algebraic
decay for largeτ explains the dynamical phase transitions that occur in this model [7].
In particular equation (2.10) implies that the valueµ = 1 separates a phase of vanishing
velocity V = 0 for 0< µ < 1 and a phase of finite velocityV > 0 for µ > 1.

• The functionalτ(a, b) also arises in the study of the transport properties of finite-size
disordered samples. The stationary currentJN which goes through a disordered sample of
lengthN with fixed concentrationsP0 andPN at the boundary can be written in terms of
the exponential functionalτN ≡ τ(0, N) as [8, 9]

JN = 1

2

[
P0

τN
− PN

∂ ln τN
∂N

]
. (2.13)

When the endx = N is a trap described by the boundary conditionPN = 0, the fluxJN is
simply a random variable inversely proportional toτN . The probability distribution ofτN
has been studied for the case of zero mean forceF0 = 0 [8] and for the general case with
arbitrary mean force [9] by different methods.

The functionalτN has also been applied to problems of finance [10–12]. Yor has
pointed out [11] the relation between the functionalτN for the particular case ofµ = 1

2,
and free Brownian motion on the hyperbolic plane. In the following, we first rederive
this correspondence and then generalize it to arbitraryµ, using an external drift on the
hyperbolic plane.

3. Relation to hyperbolic Brownian motion

The upper half-plane{(x, y), y > 0} endowed with the metric

ds2 = dx2 + dy2

y2
(3.1)

defines a two-dimensional Riemann manifold of constant negative Gaussian curvature
R = −1. The surface element dS and the Laplace operator1 are covariantly defined
as

dS = dx dy

y2
and 1 = y2

(
∂2

∂x2
+ ∂2

∂y2

)
. (3.2)
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Free Brownian motion on this manifold is defined by the diffusion equation for the Green
functionGt(x, y)

∂G

∂t
= D1G = Dy2

(
∂2

∂x2
+ ∂2

∂y2

)
G. (3.3)

It is convenient to choose the initial condition at the point(x = 0, y = 1)

Gt(x, y)−→
t→0+

δ(x)δ(y − 1). (3.4)

The normalization of the Green functionGt(x, y) then reads for any timet

1 =
∫

dS Gt(x, y) =
∫ +∞

−∞
dx

∫ +∞

0
dy

1

y2
Gt(x, y). (3.5)

Consider the probability densityPt(x, y)

Pt (x, y) = 1

y2
Gt(x, y) (3.6)

normalized with respect to the flat measure dx dy

1 =
∫ +∞

−∞
dx

∫ +∞

0
dy Pt(x, y). (3.7)

This probability density satisfies the Fokker–Planck equation

∂P

∂t
= D

(
∂2

∂x2
+ ∂2

∂y2

)
y2P (3.8)

and the initial condition

Pt(x, y)−→
t→0+

δ(x)δ(y − 1). (3.9)

We now introduce two independant Gaussian white noisesη1(t) and η2(t) and write the
stochastic differential equations for the process{x(t), y(t)} corresponding to the Fokker–
Planck equation (3.8) following respectively the Itô or Stratonovich convention [13]

Itô


dx

dt
=

√
2Dyη1(t)

dy

dt
=

√
2Dyη2(t)

(3.10)

Stratonovich


dx

dt
=

√
2Dyη1(t)

dy

dt
= −Dy +

√
2Dyη2(t).

(3.11)

Direct integration of the stochastic differential equation for the processy(t) gives
immediately

y(t) = exp

[
−Dt +

√
2D

∫ t

0
η2(s) ds

]
. (3.12)

The processy(t) is therefore simply the exponential of a linear Brownian motion with
negative drift. Let us now study more precisely the processx(t) which evolves according
to the Langevin equation

dx

dt
=

√
2Dy(t)η1(t) (3.13)
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wherey(t) is a process statistically independent of the white noiseη1(t). It is convenient
to look for a changeτ(t) of the time t which transforms this equation into the Langevin
equation for linear Brownian motion in this new timeτ(t):

dx

dτ
=

√
2Dη(τ). (3.14)

By using the homogeneity properties of the white noise

η(τ(t)) = η1(t)√
dτ/dt

(3.15)

one may determine the time transformation necessary to pass from (3.13) to (3.14):

dτ

dt
= y2(t). (3.16)

We thus obtain the representation given by Yor [11]

x(t) =
√

2D
∫ τt

0
du η(u) (3.17)

with

τt =
∫ t

0
dv y2(v). (3.18)

More explicitly by using (3.12) one has

τt =
∫ t

0
dv exp

[
− 2Dv + 2

√
2D

∫ v

0
η2(s) ds

]
. (3.19)

If we set

β

∫ v

0
F(u) du = 2Dv − 2

√
2D

∫ v

0
η2(s) ds (3.20)

then the new timeτt is nothing but the functional (2.6)

τt =
∫ t

0
dv exp

[
− β

∫ v

0
F(u) du

]
(3.21)

which is encountered in the study of classical diffusion in a quenched force{F } distributed
as the Gaussian white noise

DF(x) exp

[
− 1

2σ

∫ +∞

−∞
(F (x)− F0)

2 dx

]
(3.22)

with parametersF0 = 2D/β andσ = 8(D/β2).
In other words, the free Brownian motion{x(t), y(t)} on the hyperbolic plane can be

rewritten in terms of two independent white noises of measure

DF(x) exp

[
− 1

2σ

∫ +∞

−∞
(F (x)− F0)

2 dx

]
and Dη(t) exp

[
− 1

2

∫
dt η2(t)

]
.

(3.23)

The processy(t) is simply the exponential of the Brownian motion with driftU(t) =
− ∫ t

0 F(u) du:

y(t) = exp

[
− β

2

∫ t

0
F(u) du

]
= eβU(t)/2. (3.24)



1336 A Comtet and C Monthus

The processx(t) can be viewed as a linear Brownian motion

x(t) =
√

2D
∫ τt

0
du η(u) (3.25)

with an effective timeτt that is itself a random process depending ony(t)

τt =
∫ t

0
dv eβU(v) =

∫ t

0
dv y2(v). (3.26)

Note that the dimensionless parameterµ ≡ 2F0/βσ which characterizes the different phases
of anomalous diffusion is12 for free hyperbolic Brownian motion. This value represents the
natural drift induced by the curvature of the Poincaré half-plane. In fact one may generalize
this analysis to arbitraryµ by introducting an external constant driftm in the directiony:

µ = 1
2 +m. (3.27)

The corresponding stochastic differential equations then read

Itô


dx

dt
=

√
2Dyη1(t)

dy

dt
= −2Dmy +

√
2Dyη2(t)

(3.28)

Stratonovich


dx

dt
=

√
2Dyη1(t)

dy

dt
= −2Dµy +

√
2Dyη2(t).

(3.29)

For anyµ there is therefore a direct correspondence through equations (3.24)–(3.26)
between the joint stochastic process characterizing the one-dimensional diffusion{random
potentialU(t), exponential functionalτt } and the Brownian motion{x(t), y(t)} on the
hyperbolic plane with possibly some external constant driftm along directiony. We now
consider some consequences of this correspondence.

4. Marginal laws of the processesτ t, x(t) and y(t)

The marginal lawYt (y) of the processy(t) reads according to equation (3.24)

Yt (y) =
∫
U(0)=0

DU(s) exp

[
− 1

2σ

∫ t

0

(
dU

ds
+ F0

)2

ds

]
δ(y − eβU(t)/2). (4.1)

We thus get after some algebra the following log-normal distribution

Yt (y) = 1

y
√

4πDt
exp

[
− 1

4Dt
(ln(y)+ 2µDt)2

]
(4.2)

whereµ = 2F0/βσ andD = β2σ/8. In the case of free Brownian motion(µ = 1
2), this

marginal law tends to aδ distribution in the limitt → ∞
Y∞(y) = δ(y). (4.3)

The Brownian particle is therefore attracted to they = 0 axis as a result of the curvature
of the hyperbolic plane. Note that this axis represents infinity on this plane. This limit law
remains unchanged as long asµ ≡ ( 1

2 + m) > 0. However, when the constant external
drift m in they direction is negative enough to overcome the natural drift of the hyperbolic
plane (m < − 1

2), there is no equilibrium distribution for the processy(t). We shall now
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show how in the caseµ > 0 the existence of the stationary distribution (4.3) for the process
y(t) may govern the existence of a stationary distribution for the processx(t).

The processx(t) is a Brownian motion of effective timeτt which is a functional of the
processy(t):

x(t) =
√

2D
∫ τt

0
du η(u) with τt =

∫ t

0
dv eβU(v) =

∫ t

0
dv y2(v). (4.4)

The statistical independence ofη(t) andτt allows us to write the marginal lawXt(x) of the
processx(t) in terms of the probability distributionψt(τ ) of the functionalτt as

Xt(x) =
∫ ∞

0
dτ ψt(τ )

1√
4πDτ

e−x2/4Dτ . (4.5)

In a previous work [9], we have shown thatψt(τ ) obeys a Fokker–Planck equation
whose solution can be expressed in terms of an expansion on a suitable eigenvector basis.
Let us rederive briefly this expansion for completeness. The starting point is the Langevin
equation (2.7) satisfied byτ(a, b) defined in (2.6):

∂τ

∂a
(a, b) = βF(a)τ(a, b)− 1 (4.6)

where the random forceF is Gaussian white noise of measure

DF(x) exp

[
− 1

2σ

∫ +∞

−∞
(F (x)− F0)

2 dx

]
. (4.7)

The processτ(a, b) is therefore a multiplicative Markov process. By using the Stratonovich
prescription for (4.6), one may write the corresponding Fokker–Planck equation for the
probability distributionPa,b(τ ) as

−∂Pa,b(τ )
∂a

= ∂

∂τ

[
ατ 2∂Pa,b(τ )

∂τ
+ ((µ+ 1)ατ − 1)Pa,b(τ )

]
(4.8)

which must be supplemented by the initial conditionPb,b(τ ) = δ(τ ).
SincePa,b(τ ) can only depend on the length(b− a) of the integration domain defining

τ(a, b) in equation (2.6), we have

Pa,b(τ ) = ψt(τ ) wheret = b − a. (4.9)

The probability distributionψt(τ ) of the processτt therefore satisfies the Fokker–Planck
equation

∂ψt(τ )

∂t
= ∂

∂τ

[
ατ 2∂ψt(τ )

∂τ
+ ((µ+ 1)ατ − 1)ψt (τ )

]
(4.10)

with the initial conditionψt=0(τ ) = δ(τ ).
We now recall the solution [9] expanded in the Fokker–Planck eigenvector basis

ψt(τ ) = α
∑

06n<µ/2
e−αtn(µ−n) (−1)n(µ− 2n)

0(1 + µ− n)

(
1

ατ

)1+µ−n
Lµ−2n
n

(
1

ατ

)
e−1/ατ

+ α

4π2

∫ ∞

0
ds e−αt(µ2+s2)/4s sinhπs

∣∣∣0 (
−µ

2
+ i

s

2

)∣∣∣2
(

1

ατ

)(1+µ)/2

×W(1+µ)/2,is/2

(
1

ατ

)
e−1/2ατ (4.11)
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where theLµn are Laguerre polynomials and theWµ,ν Whittaker functions. By integrating
with the Gaussian kernel (4.5) and by using the transpositionα = 4D, one may obtain an
expansion presenting the same time-relaxation spectrum

Xt(x) =
∑

06n<µ/2
e−4Dn(µ−n)t (−1)n(µ− 2n)

n!0(1 + µ− n)

0(µ+ 1
2 − n)

0( 1
2 − n)

(
1

1 + x2

)µ+ 1
2

×F(−n, n− µ, 1
2; −x2)

+ 1

4π2
√
π

∫ ∞

0
ds e−D(µ2+s2)t s sinhπs

∣∣∣0 (
−µ

2
+ i

s

2

)∣∣∣2
∣∣∣∣0 (

µ+ 1

2
+ i

s

2

)∣∣∣∣2

×F
(
µ+ 1

2
+ i

s

2
,
µ+ 1

2
− i

s

2
,

1

2
; −x2

)
(4.12)

whereF(a, b, c; z) denotes the hypergeometric function of parameters(a, b, c).
We note parenthetically that the marginal lawXt(x) itself satisfies a Fokker–Planck

equation. Indeed equations (4.5) and (4.10) lead directly to

∂Xt(x)

∂t
= D

∂

∂x

[
(1 + x2)

∂Xt(x)

∂x
+ (2µ+ 1)xXt(x)

]
. (4.13)

To our knowledge, this equation which has been obtained here through the link (3.17) with
the functionalτt , has never been obtained directly.

Let us stress the utility of the developments (4.11) and (4.12) in the study of long-time
behaviour. Forµ < 0 the relaxation spectrum is purely continuous, and there is no limit
distribution. However, forµ > 0 there is at least one discrete term (n = 0) that corresponds
to an equilibrium distributionX∞(x) in the limit t → ∞:

X∞(x) = 1√
π

0(µ+ 1
2)

0(µ)

(
1

1 + x2

)µ+ 1
2

. (4.14)

For 0< µ < 2 this is the only discrete term, and the relaxation towards equilibrium is thus
entirely governed by the continuum. For 2< µ there are other discrete terms, for example
n = 1, that govern the exponential relaxation towards equilibrium.

The existence of the limit law (4.14) for hyperbolic Brownian motion reveals a
‘localization’ phenomenon in directionx. This effect comes from the attraction towards the
axis y = 0. Note that for the free case(µ = 1

2), the asymptotic marginal lawX∞(x) is
simply a Lorentzian:

X∞(x) = 1

π

1

1 + x2
. (4.15)

In sum there exist equilibrium distributions forY∞ andX∞ as long asµ = ( 1
2 +m) > 0:

Y∞(y) = δ(y)

X∞(x) = 1√
π

0(µ+ 1
2)

0(µ)

(
1

1 + x2

)µ+ 1
2

.
(4.16)

The joint law of the processes{x(t), y(t)} thus exhibits the factorization form in the limit
t → ∞:

P∞(x, y) = X∞(x)δ(y). (4.17)

However, as long as timet is finite, the two processesx(t) andy(t) remain coupled. The
study of their joint law is then needed to get a complete description of hyperbolic Brownian
motion.
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5. Joint laws of the processes{τ t,U (t)} and {x(t),y(t)}

By using path integrals, we may obtain very simply the joint lawψt(τ ‖ u) of the random
variables

τt =
∫ t

0
dx eβU(x) and U(t).

Let us generalize the approach we used in [9]. Theτ -Laplace transform of the joint law

E(e−pτt ‖ u) ≡
∫ ∞

0
dτ e−pτψt (τ ‖ u) (5.1)

can be written as a path integral over the random potential

E(e−pτt ‖ u) =
∫ U(t)=u

U(0)=0
DU(x) exp

[
− 1

2σ

∫ t

0

(
dU

dx
+ F0

)2

dx − p

∫ t

0
dx eβU(x)

]
= exp(−F 2

0 t/2σ) exp(−F0u/σ)

∫ U(t)=u

U(0)=0
DU(x)

× exp

[
− 1

2σ

∫ t

0

(
dU

dx

)2

dx − p

∫ t

0
dx eβU(x)

]
. (5.2)

The remaining path integral is simply the Euclidean quantum-mechanical Green function
〈u|e−tH |0〉 associated with the Liouville Hamiltonian

H = −σ
2

d2

du2
+ peβu. (5.3)

We therefore get

E(e−pτt ‖ u) = e−F 2
0 t/2σe−F0u/σ 〈u|e−tH |0〉. (5.4)

The expansion of the Green function〈u|e−tH |0〉 in the basis of eigenfunctionsψk(u)

ψk(u) = 2

√
βk

απ
sinh

2kπ√
α
K2ik/

√
α

(
2

√
p

α
eβu/2

)
(5.5)

gives

〈u|e−tH |0〉 =
∫ +∞

−∞

dk

2π
ψk(u)ψ

∗
k (0)e

−k2t . (5.6)

We finally obtain as theτ -Laplace transform of the joint lawφt(τ ‖ y) of the random
variables

τt =
∫ t

0
dx eβU(x) and y(t) = eβU(t)/2

after some changes of variables

E(e−pτt ‖ y) ≡
∫ ∞

0
dτ e−pτφt (τ ‖ y)

= e−αtµ2/4

π2

1

y1+µ

∫ +∞

−∞
dq e−αtq2/4q sinhπqKiq

(
2y

√
p

α

)
Kiq

(
2

√
p

α

)
. (5.7)
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We now compute thex2-Laplace transform of the joint lawQt(x, y) of the hyperbolic
Brownian motion starting from the series of moments ofx2(t) with y(t) being fixed as the
constanty

E(e−qx2(t) ‖ y) ≡
∫ ∞

−∞
dx e−qx2

Qt(x, y)

=
∞∑
n=0

(−q)n
n!

E(x2n(t) ‖ y(t) = y). (5.8)

By using equation (3.17), we may obtain a relation between the moments ofx2(t) and
the moments ofτt , wheny(t) is fixed asy:

E(x2n(t) ‖ y) = (2D)nN (n)E(τnt (t) ‖ y) (5.9)

whereN (n) denotes the Wick combinatorial factor that counts the number of ways to pair
the 2n functionsη. In particularN (n) is equal to the moment of order 2n of a suitable
Gaussian random variableξ with variance unity:

N (n) =
∫ +∞

−∞

dξ√
2π
ξ2ne−ξ2/2 = 2n

0(n+ 1
2)

0( 1
2)

=
n∏
k=1

(2k − 1). (5.10)

By using this integral representation, we can resum the series of moments ofτt under the
integral

E(e−qx2(t) ‖ y) =
∫ +∞

−∞

dξ√
2π

e−ξ2/2E(e−q2Dξ2τt ‖ y). (5.11)

From equation (5.7) and the correspondenceα = 4D, we get

E(e−qx2(t) ‖ y) = 1

π2√πq
(

1

y

)µ+1 ∫ ∞

0
dk e−k2/4q

×
∫ +∞

−∞
dν e−Dt(µ2+ν2)ν sinhπνKiν(ky)Kiν(k). (5.12)

For the free case(µ = 1
2), one may also obtain this expression from the Green function

Gt(x, y) on the hyperbolic plane [14]:

E(e−qx2(t) ‖ y) =
∫ +∞

−∞
dx e−qx2 1

y2
Gt(x, y). (5.13)

We finally mention that an alternative form of the joint lawφt(τ ‖ y) given in equation (5.7)
has been obtained by Yor [12] through the time Laplace transform∫ ∞

0
dt e−stφt (τ ‖ y) = 1

τy1+µ e−((1+z2)/ατ)Iν

( z

ατ

)
whereν =

√
µ2 + 4

s

α
. (5.14)

One may also find in the mathematical literature [10–12] different expressions related to
the probability distributions of the functionalτ {Ts}, where Ts is an independent time,
exponentially distributed with parameters.
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6. Conformal mapping from Poincaré half-plane to unit disk

Let us consider the conformal mappingw from the Poincaŕe upper half-plane{z =
x + iy, y > 0} to the unit disk{w = reiθ , |r| 6 1}:

w = iz + 1

z + i
. (6.1)

The radial coordinater is directly related to the hyperbolic distanced on the Poincaŕe
half-plane between the arbitrary point(x, y) and the point{x = 0, y = 1} which we choose
as the initial point of the Brownian motion (3.9):

r = tanh

(
d

2

)
. (6.2)

The circle at infinityr = 1 corresponds to the axisy = 0. The unit disk is well suited to
study free hyperbolic Brownian motion since it contains explicitly the rotational invariance
in the angleθ . In the new coordinates, the metric is

ds2 = dx2 + dy2

y2
= 4

(1 − r2)2
(dr2 + r2 dθ2) (6.3)

and the Laplace operator is

1 = y2

(
∂2

∂x2
+ ∂2

∂y2

)
= (1 − r2)2

4

[
1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ2

]
. (6.4)

In the free case, the Fokker–Planck equation for the probability densityQt(r, θ) reads

1

D

∂Q

∂t
= ∂

∂r

[
r
∂

∂r

(
(1 − r2)2

4r
Q

)]
+ (1 − r2)2

4r2

∂2

∂θ2
Q. (6.5)

The rules of stochastic calculus [13] give the corresponding stochastic differential equations

Itô


dr

dt
= D

(1 − r2)2

4r
+

√
2D

1 − r2

2
ηr(t)

dθ

dt
=

√
2D

1 − r2

2r
ηθ (t)

(6.6)

Stratonovich


dr

dt
= D

1 − r4

4r
+

√
2D

1 − r2

2
ηr(t)

dθ

dt
=

√
2D

1 − r2

2r
ηθ (t).

(6.7)

Unlike the system (3.10) for the processes{x(t), y(t)}, these equations cannot be integrated
straightforwardly to give the processes{r(t), θ(t)} as functionals of the white noises
{ηr(t), ηθ (t)}. We may, however, use the symmetry of the problem to write the asymptotic
probability distributionQ∞(r, θ) in the limit t → ∞ as the uniform measure on the unit
circle

Q∞(r, θ) = 1

2π
δ(r − 1). (6.8)

For µ 6= 1
2, the external constant driftm = (µ − 1

2) along they direction breaks the
rotational invariance in the angleθ , and the unit disk is not particularly useful anymore.
Nevertheless, one may obtain the asymptotic probability distributionQ∞(r, θ) from the
asymptotic law (4.17) forP∞(x, y) and from the JacobianJ {(r, θ)/(x, y)},

Q∞(r, θ) = 4r

(r2 + 1 − 2r sinθ)2
P∞

(
2r cosθ

r2 + 1 − 2r sinθ
,

1 − r2

r2 + 1 − 2r sinθ

)
(6.9)
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obtaining after some algebra as the generalization of (6.8)

Q∞(r, θ) = δ(r − 1)
1√
π

0(µ+ 1
2)

0(µ)

1

2µ+ 1
2

(1 − sinθ)µ− 1
2 . (6.10)

7. Conclusion

We have discussed the exponential functionalτt which governs transport properties of
one-dimensional classical diffusion in a random Brownian potential in terms of hyperbolic
Brownian motion. As explained in the introduction, this may be considered as an example of
a more general relationship that exists between one-dimensional, or quasi-one-dimensional,
disordered systems with a multiplicative stochastic stucture, and diffusion on symmetric
spaces.

It is interesting that the time-relaxation spectrum found for the probability distributions
ψt(τ ) andXt(x), equations (4.11) and (4.12), also appears in the quantum spectrum of a
particle in a constant magnetic fieldB on the hyperbolic plane [15]. For the hyperbolic
geometry, a constant magnetic field is defined as the flux through a covariant surface element
dS = (1/y2) dx dy. The two spectra coincide if we identify the magnetic fieldB > 0 in
terms of the driftµ as

B = 1 + µ

2
.

In this context the existence of bound states in a strong enough magnetic fieldB > 1
2

corresponds to the presence of closed classical orbits [15]. It would be useful to understand
this correspondence between such spectra at the level of the stochastic processes themselves.

As a final remark we mention that the Liouville Hamiltonian that we encountered in
the path-integral formalism (5.3), and which is closely related to hyperbolic geometry, also
appears in the study of some fine properties of one-dimensional quantum localization for
the Schr̈odinger HamiltonianH = −d2/dx2 + V (x) whereV (x) is a Gaussian white-noise
potential [16]. Kolokolov used a path-integral method to compute correlation functions of
eigenstates and distribution functions of inverse participation ratio in the high-energy limit.
In this formalism the Liouville Hamiltonian shows up in the effective action of the path
integral. An expansion of this path integral in a basis of eigenstates then gives expressions
very similar to the one we obtained for the probability distribution of the joint law of the
processes{τt , U(t)}.
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Appendix. Path-integral method to prove the identity in law (3.20)

In section 3 we derived the identity in law (3.17) mentioned by Yor for the free hyperbolic
Brownian motion [11]. As explained before, this identity can easily be generalized to any
µ by the same method. Let us now derive it through a path-integral method using an



Diffusion in a1D random medium 1343

appropriate stochastic reparametrization of time in the path integral. This tool has already
proven to be very useful in other contexts [17].

The integration of stochastic differential equations (3.27) gives the processx(t) as the
following functional of the two white noises{η1, η2}:

x(t) =
√

2D
∫ t

0
dv η1(v) exp

[
− 2Dµv +

√
2D

∫ v

0
η2(s)ds

]
. (A.1)

The marginal lawXt(x) of the processx(t) therefore reads by definition

Xt(x) =
∫

Dη1(u)Dη2(u) exp

[
− 1

2

∫ t

0
du (η2

1(u)+ η2
2(u))

]
×δ

(
x −

√
2D

∫ t

0
dv η1(v) exp

[
− 2Dµv +

√
2D

∫ v

0
η2(s) ds

])
. (A.2)

Let us first change fromη2(u) to U(u) defined byβU(v)/2 = −2Dµv+√
2D

∫ v
0 η2(s) ds:

Xt(x) =
∫

Dη1(u) exp

[
− 1

2

∫ t

0
du η2

1(u)

]
×

∫
U(0)=0

DU(u) exp

[
− 1

4D

∫ t

0
du

(
β

2

dU

dv
+ 2Dµ

)2 ]
×δ

(
x −

√
2D

∫ t

0
dv η1(v)e

βU(v)/2

)
(A.3)

and now fromη1(u) to x(u) ≡ √
2D

∫ u
0 dv η1(v)eβU(v)/2 :

Xt(x) =
∫ x(t)=x

x(0)=0
Dx(u)

∫
U(0)=0

DU(u) exp

[
− 1

4D

∫ t

0
du

(
β

2

dU

dv
+ 2Dµ

)2 ]
× exp

[
− 1

4D

∫ t

0
du

(
dx

du
e−βU(u)/2

)2 ]
. (A.4)

Let us now perform a time reparametrization of the trajectoriesx(u) in order to recover the
Wiener measure∫ t

0
du

(
dx

du

)2

e−βU(u) =
∫ τ

0
ds

(
dx

ds

)2

where

ds = eβU(u) du and τ {U(u)} =
∫ t

0
eβU(u) du. (A.5)

The new final timeτ {U(u)} is not fixed anymore, but depends on the realization of random
potentialU(u). To take into account this constraint, we can insert the identity

1 =
∫ ∞

0
dτ δ

(
τ −

∫ t

0
eβU(u) du

)
(A.6)

to obtain

Xt(x) =
∫ ∞

0
dτ

∫ x(t)=x

x(0)=0
Dx(u)

∫
U(0)=0

DU(u) exp

[
− 1

4D

∫ t

0
du

(
β

2

dU

dv
+ 2Dµ

)2 ]
× exp

[
− 1

4D

∫ τ

0
ds

(
dx

ds

)2 ]
δ

(
τ −

∫ t

0
eβU(u) du

)
. (A.7)
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Let us now perform the Gaussian path integral onx(u),∫ x(t)=x

x(0)=0
Dx(u) exp

[
− 1

4D

∫ τ

0
ds

(
dx

ds

)2 ]
= 1√

4πDτ
e−x2/4Dt (A.8)

to get

Xt(x) =
∫ ∞

0
dτ

1√
4πDτ

e−x2/4Dtψt (τ ) (A.9)

where

ψt(τ ) =
∫
U(0)=0

DU(u) exp

[
− 1

4D

∫ t

0
du

(
β

2

dU

dv
+ 2Dµ

)2 ]
δ

(
τ −

∫ t

0
eβU(u) du

)
(A.10)

is by definition the probability distribution of the functionalτt = ∫ t
0 eβU(u) du.

Equation (A.9) is just the translation in terms of probability distributions of the identity
in law between the processx(t) and a linear Brownian motion of stochastic timeτt :

x(t) =
√

2D
∫ τt

0
du η(u).
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